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Abstract
It is known that fusion of information from graph features, compared to individual features,
can provide superior inference for anomaly detection [PPM+10]. However, selection of a
fusion technique other than a naive equal weighting is not trivial. We present a multivariate
methodology for fusion of features derived from time series of graphs, and investigate its
inferential efficacy. The results demonstrate that our methodology has higher detection,
estimation, and localization power than the standard linear weighting fusion techniques for
a certain class of anomaly detection problems. Simulation results using a time series of
random graphs, as well as illustrative results from a time series of Enron email data, are
presented.

Key Words: feature representation, fusion, time series analysis, graph theory, anomaly
detection, statistical method, hypothesis test

1. Introduction

In [PCP10], the authors consider an inference task on a graph to determine if it
is homogeneous or not by comparing a graph feature. That is, the null hypothesis
(H0) is that all vertices have the same probability of connection. The alternative
hypothesis (HA) is that there exists a subset of vertices that are more highly likely
to be inter-connected than the rest of the graph. For example, given a graph
G = (V,E), with the vertex set V = {1, . . . , n} and edge set E, a subset of m
vertices (VA ⊂ V, |VA| = m, m ∈ {2, . . . , n}) are connected with probability puv,A

where puv,A > puv,0. The remaining n−m vertices are connected with probability
puv,0, just like the entire graph under H0, to represent the portion of the population
not “chatting”. An edge between a vertex in VA and a vertex in V \VA occur with
probability puv,0. We will call this graph κ(n,m, p, q) where p = puv,0 and q = puv,A,
and it is illustrated in Figure 1.

In this paper, we extend this idea to a time series of graphs; letG1,G2, · · · , GT=tmax

be a time series of graphs, with each graph Gt = (V,Et); that is, all graphs are on
the same vertex set V = [n] and the edges at time t, denoted Et, are given pairs
(u, v) ∈ V × V . A statistical inference task is then to detect whether or not there
has emerged a “chatter” group at time t = t∗ as shown in Figure 2.

Meanwhile, in [PPM+10], an idea of joint exploitation work was introduced by
using the content and the externals (or activities) of communication graphs together
and it was demonstrated that the technique could be superior to inference using
either one. However, the way to combine both features in the paper was simply a
linear weighting by adding both statistics together with equal weights.
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Figure 1: The “kidney-egg” graph
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Figure: H0 : ER(n, p) vs HA : K(n, p, m, q). We use n = 100, p = 0.1,
m = 9, and q = 0.8.Figure 1: HA: The “kindney-egg” random graph model, denoted as κ(n, p,m, q).

The small “egg” represents the m vertices (VA) that exhibit chatter (each edge
occurring with probability q = puv,A). The “kidney” is the population of n − m
vertices which are not exhibiting chatter (each edge occurring with probability p =
puv,0 < q). Edge between a vertex in the kidney and a vertex in the egg with
probability p = puv,0. When m = 0, it is denoted as H0 : ER(n, p). Redo this pic

t = 1 t = t∗ − 1 t = t∗ t = tmax

1

Figure 2: A time series of kidney-egg random graph model. All the graphs are
H0 : Gt = ER(n, p) for all t except at t = t∗ where HA : Gt∗ = κ(n, p,m, q).

We present here an experiment using a time series of simulated data as well as
the Enron email corpus to demonstrate that a statistic which combines multiple
features can be superior compared to a method that only uses an individual feature
sepatately. One approach is to investigate a statistical power to detect abnormality
by using a single graph feature, and another approach is to use multiple features
jointly, either by equal weighting individual features or by non-equal (adaptive)
weighting. Our results agrees to ones in [PPM+10] that an anomaly detection of
time series of graphs using a collection of graph features is superior to a corre-
sponding individual graph feature. Moreover, the results indicate that our new
adaptive weighting fusion scheme has higher detection, estimation, and localization
power than the previous linear equal weighting fusion technique for certain anomaly
classes.

Section 2 of this paper presents a graph structure with multiple features we
are using in this experiments, section 3 defines our detection from a hypothesis
test, section 4 introduces a couple of ways of fusion techniques and their illustrated



examples, section 5 shows a few results with simulated data as well as Enron email
data. We conclude the paper with discussion in section 6.

Is the flow of Introduction ok?

2. Graph Features

We use undirected simple graphs G ∈ Gn, the collection of all unlabeled graphs on
the n vertices V = {1, . . . , n}. We denote the vertex set V = V (G) and edge set
E = E(G); thus G = (V,E). To denote edges in E, we use the notation euv for
u, v ∈ V (it is said that vertices u and v are adjacent). We will not consider loops,
weighted, or parallel edges, thus if euv ∈ E then u 6= v. Our graphs are undirected,
so there is no distinction between euv and evu.

We consider some of the features that were used in [PCP10]; they are size,
maximum degree, maximum average degree (greedy approximation), scan statistic,
number of triangles, clustering coefficient, and average path length. In all features
except the average path length (see below for detail), a large value of the feature is
evidence in favor of HA. We examine these seven graph statistics, Ft,i, where i is a
feature index, as features to detect excessive local activity.

2.1 Size

The size of a graph is the number of edges in the graph, given by

size(G) = |E(G)|.
Since we only consider an undirected graph without loops, the maximum possible
size of a graph G is

(
n
2

)
= n×(n−1)

2 , where n is the order of a graph G.

2.2 Maximum Degree

The maximum degree ∆(G) is given by

∆(G) = max
v∈V

d(v)

where d(v) is the degree of vertex v. This is the simplest local graph feature.

2.3 Maximum Average Degree

The maximum average degree over all subgraphs of G is denoted by MAD(G). If d(v)
is the degree of vertex v, then the average degree of a graph G is given by

d̄(G) =
1
|V |

∑
v∈V

d(v) =
2× size(G)
order(G)

where order(G) = |V |, the number of vertices of graph G. Thus the maximum
average degree is given by

MAD(G) = max
Ω⊂G

d̄(Ω)

where the maximum is over all induced subgraph of G, Ω.
Since this feature is difficult to compute exactly, we resort to consideration of

greedy approximation, MADg(G) to estimate the maximum average degree of a graph.
The algorithm interatively removes a vertex with the smallest degree and calculate
the average degree of the remaining induced subgraph. After removing all vertices,
the largest average degree encountered is returned. This provides an approximation
for the maximum average degree that is easy to implement [UE97].



2.4 Scan Statistic

Scan statistics [PCMP05] are graph features based on local neighborhoods of the
graph. We will consider the scan statistics Sk(G) to be the maximum number of
edges over all kth order neighborhoods. We will consider k = {1, 2, 3}, where Sk(G)
is given by

Sk(G) = max
v∈V

size(Ω(Nk[v;G])).

2.5 Number of Triangles

We consider the total number of triangles in G. If A is the adjacency matrix for
the graph G, then the number of triangles is given by

τ(G) =
trace(A3)

6
.

The trace is zero if and only if the graph is triangle-free.

2.6 Clustering Coefficient

We consider the global clustering coefficient (CC) in G:

CC =
c

o
,

where c is the number of closed triplets (a subgraph with three vertices and three
edges) and o is the number of open triplets (a subgraph with at least two edges).
This measures the probability that the adjacent vertices of a vertex are connected.
This is sometimes also called the transitivity of a graph.

2.7 Average Path Length

The average path length (APL) is defined by the inverse of the average length of
the shortest paths to/from all the other vertices in the graph G:

APL =

∑
u,v `(u, v)
n(n− 1)

,

where `(u, v) is the shortest path between vertices u and v. This measures how
many steps is required to access every other vertex from a given vertex on average.
Unlike the others, this feature value gets smaller as a graph becomes more complete
(or “abnormal”), so we use a negated value in this work.

Histograms of all nine features Fi (seven different features with three in scan statis-
tics) for H0 and HA are depicted in Figure 3. Pink refers to H0 and cyan refers to
HA. As we can see from this figure, some features (e.g., size, maximum degree, and
scan statistics) have relatively larger variances than the rest. It is our goal to mea-
sure the performance of each individual graph feature and then compare them with
the effectiveness of combining features on a statistical inference task introduced in
the next section. Does this make sense?
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Figure 3: Histograms of 10,000 Monte Carlo replicates of Fi for H0 and HA with
q = 0.3.

3. Inference Statistics

The purpose of our inference is to detect a local (temporal) behavior change in
the time series of graphs. In particular, we wish to consider as our alternative
hypothesis that a small (unspecified) collection of vertices (“egg”) increase their
within-group activity at some (unspecified) time t∗ as compared to recent past
(an anomaly based on graph feature information), while the majority of vertices
(“kidney”) continue with their normal behavior. The null hypothesis, then, is a
form of temporal homogeneity – no probabilistic behavior changes in terms of graph
features. See Figure 4.

As mentioned in [PCMP05], the raw features Ft,i are standardized using a quan-
tity computed from the recent past observations:

St,i = (Ft,i − µ̃t,i,`)/max(σ̃t,i,`, 1),

where µ̃t,i,` and σ̃t,i,` are the running mean and standard deviation estimates of Ft

based on the most recent ` time steps. Then, detections are defined here at time t
for which Ft achieves a large value (e.g., five standard deviations above its mean).
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Figure: H0 : homogeneity in time and HA : local chatter at time t∗.
Figure 4: H0 at t = t∗ − 1 and HA at t = t∗. Redo this pic

4. Fusion

4.1 Equal Weighting

In [PPM+10], we introduced a simple fusion technique by combining a pair of statis-
tics with equal weights:

Sj
t =

d∑
i=1

wt,iSt,i, wt,i = 1/d,

where d is the number of graph features, which is nine in this case. With this simple
“fusion” method, we demonstrated that an anomaly at time t∗ can be detectable
even though neither of individual statistics detect. However, the selection of fusion
weights for each feature is too trivial for this case, so more sophisticated weight
selection scheme is desirable.

4.2 Adaptive Weighting

An alternative weighting scheme introduced in this paper is an adaptive weighting:

wt,i = (St,i − µi)/σi,

where µi and σi are the mean and the standard deviation of feature i. This is known
as the standardization or the 1-dimensional Mahalanobis distance from St,i to µi,
which is also called the z-score [DHS00]. This means that features with larger
distances (or variances) get higher weights and contribute more on the inference
task with fusion.

A graphical example is illustrated in Figures 5 and 6. In Figure 5, each point
represents a Monte Carlo replicate of graph in two-dimensional Euclidean space
using the first two features (size and maximum degree). The black points are SH0 ,
and the color points are SHA

; the points above the detection boundaries (critical
values on statistical power analysis) are colored in green and represent the power
of the test. Notice that this boundary is linear for the equal weighting while it is
not for the adaptive weighting. The former is because the boundary is calculated
based on equal weighting for all SH0 points; the slope of the line is always −1
and the intercept can be calculated with a given significance level of the test (e.g.,



α = 0.5). For the adaptive weighting case, meanwhile, the color of the SHA
points

are determined by the distance from each point to µi. This means that every point
gets a different weight and therefore the detection boundary is not linear. Figure 6
shows the adaptive weighting case for various values for q. As q increases, there are
more green points, which implies for higher power.
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(b) Adaptive Weighting

Figure 5: Scatter plots for each fusion technique. Each point represents a Monte
Carlo replicate of graph in two-dimensional Euclidean space. The black points
are SH0 , and the color points are SHA

; the points above the detection boundaries
(critical values) are colored in green.
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Figure 6: Scatter plots for adaptive weighting case for various q values. They are
q = {0.2, 0.3, 0.4, 0.5} from top left in clockwise. As q increases, there are more
green points, which implies for higher power of the test. add labels?



5. Experiments

5.1 Synthetic Data

The graph model in this experiment only considers a simple scenario in which all
edges are mutually independent [PCP10]. For example, if the vertices represent the
actors, i.e., the senders and the recipients of emails and each edge represents an
email between two actors, then H0 states that each actor communicates with each
other actor with equal probability while HA states that there is a subset of actors
which may exchange an email with higher probability amongst each other – there is
more “chatter” among these vertices. In addition to this spatial conditional inde-
pendence, we also adapt a temporal independence, i.e., these probabilities remain
the same throughout time. In this sense, we call this the first approximation model.

In this paper, we also consider more sophisticated models including what we call
the second approximation model and the exact model. For the second approximation
model, the probability of each edge is computed from the dot product of random
probability vectors. The dependence between two time intervals come from the
latent Markov processes [LP09]. What about the exact? The general algorithm for
implementing the time series of random dot product graph is listed in Algorithm 5.1.
The only difference among these three models occurs in line 3 where the probability
vectors for vertices are obtained; the first approximation uses identical vectors based
on (p, q) pair throughout time while the second approximation and the exact models
use random probability vectors. A detail of how to generate these vectors is beyond
the scope of this paper and readers are encouraged to refer [LP09].

Algorithm 5.1 Time Series of Random Dot Product Graph
Require: n, p,m, q, tmax
1: for all time t such that 0 < t ≤ tmax do
2: initialize At

3: vp← calculate probability vectors for all vertices using (n, p,m, q)
4: for all vertex u such that 1 ≤ u ≤ n do
5: for all vertex v such that 1 ≤ v ≤ n do
6: if i > j then
7: e← 〈vpu, vpv〉 {vector dot product}
8: if e > 0.5 then
9: At[u, v]← At[v, u]← 1 {draw an edge uv}

10: end if
11: end if
12: end for
13: end for
14: A[t]← At

15: end for
16: return A, time series of graph

Our Monte Carlo experiment with synthetic data is performed with a time
series of graphs G1, . . . , Gtmax, where tmax = 100, t∗ = 51, and Gt∗ = κ(n =
50, p = 0.01,m = 6, q) with q ∈ {0.2, 0.3, 0.4, 0.5}. For each q, we perform R =
10, 000 Monte Carlo simulation, yielding statistical power estimates for each graph
feature or fusion of features. The result for individual comparative power analysis
is depicted in Figure 7 with a color bar for each feature. For a difficult case (when
q is small, e.g., q = 0.2 in blue), the performance for all features are equally poor,



while the difference is apparent as q increases. This results agree with the ones in
[PCP10], that is, maximum average degree, scan statistics, and number of triangles
outperforms the rest. The performance of fusion with all nine features is depicted
as horizontal lines on top of bars in Figure 8. In all cases, the fusion lines are above
the corresponding individual bars, where the adaptive weighting fusion lines are
above the equal weighting fusion lines.

size maxd gMAD scan1 scan2 scan3 numtri cc apl
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q=0.3
q=0.4
q=0.5

Figure 7: A statistical power plot as a function of various q ∈ {0.2, 0.3, 0.4, 0.5}
values with α = 0.05, R = 10, 000 Monte Carlo replicates each. All color bars start
from 0.

Figure 9 depicts power as a function of feature dimension for different fusion
techniques for three different models respectively. The difference among these mod-
els are minimal as expected while the superiority for the adaptive weighting scheme
(labeled as “fus3” in green) is apparent.

5.2 Enron Email Data

We use the same Enron email data used in [PCMP05] for this experiment. The nine
features, denoted as St where 1 ≤ t ≤ 189, from a graph built with email messages
during one week period among 184 executives are calculated. Figure 10 depicts
histograms of S.
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Figure 8: A statistical power plot as a function of various q ∈ {0.2, 0.3, 0.4, 0.5}
values with α = 0.05, R = 10, 000 Monte Carlo replicates each. The horizontal lines
show the power using joint statistics Sj

t =
∑9

i=1wt,iSt,i. remove fus2

Figure 11 depicts a scatter plot of S in the first two principal component space.
Each point represents St, where 0 ≤ t ≤ 189. Some of outliers are marked with
week numbers, and three detections appeared in [PCMP05] are shown in red.

Our interest is the “alias” detection at week 132 in [PCMP05], when an employee
changes his/her email address, therefore we choose t∗ = 132, the third week of May
2001. Figure 12 depicts scatter plots of Gt for t = {120, . . . , 132} with various pairs
of dimensions, where the Gt∗=132 is shown in red. It shows that the combination of
(size,maxd) feature pairs detects Gt∗ with both weighting fusions, depicted in (a),
while only the adaptive weighting fusion can detect Gt∗ with other combinations of
feature pairs.

More text here!

6. Discussion

We demonstrated that our adaptive weighting fusion methodology has higher detec-
tion, estimation, and localization power than the standard equal weighting fusion



scheme as well as individual feature statistics. Not only is the performance of our
new fusion technique better than the existing methods, but also the superiority is
statistically significant.

A possible extension of this work can be to apply this technique into communi-
cation networks where the message contents or topics are also considered. In this
way, not only an excessive chatter group but also the topic changes of a certain
group throughout time can be detected.

More text here?
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Figure 9: Statistical power plots of fusion statistics for three different models as a
function of feature dimension when q = 0.3. remove red lines
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Figure 10: Histograms of S for Enron email data.
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Figure 11: A scatter plot of S for Enron email data in the first two principal
component space. Each point represents a week of communication graph. Some of
outliers are marked with week numbers, and three detections appeared in [PCMP05]
are shown in red.
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Figure 12: Scatter plots of Gt for t = {120, . . . , 132} in various pairs of dimensions.
The Gt∗=132 is shown in red. remove red lines


